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Abstract-Time-averaged flows induced by oscillations of a heated (or cooled) solid sphere immersed in a 
liquid are investigated. The cases of an infjnite surrounding liquid and the liquid placed into the spherical 
rigid envelope are considered. The gravity is absent. The interaction of thermovibrational flows and 
vibrational Schlichting flows is studied. New generalized equations are used for the description of thermo- 
vibrational convection. Analytical solutions have been obtained for small values of the governing 
parameters, under restriction of creeping flows, both in the case of intlnite surrounding liquid and liquid 
placed into the rigid envelope. It has, been found that the vibrational flow essentially depends on the layer 
thickness and can be rather complicated in the case of small thicknesses. At a fixed layer thickness, the 
creeping flow structure is defined by only one parameter, which is the ratio of vibrational Grashof number 
and Schlichting parameter. In the case of arbitrary values of the parameters, vibrational flows have been 
studied by a finite-difference method. The evolution of the fitlite-amp~tude‘vibratioaal flow structure with 

the increase of the vibrational Grashof number has been investigated. 

1. INlROfMJClR3N 

It is known that the high frequency vibrations of 
the body immersed in a liquid induce time-averaged 
flow in that liquid. Dierent mechanisms of flow gen- 
eration can occur. One of them, found by Schlichting 
[I J, acts even in uniform fluid (of constant density). 
In this case the pulsating flow in the thin viscous skin- 
layer near the vibrating body surface is of vertical 
nature and, due to non-linear interaction, leads to 
time-averaged flow which is a vortex one as well. If 
the fluid density is non-uniform, for example due to 
non-isothermality, the additional mechanism for the 
time-averaged flow generation is at work. Flows of 
this type have been studied before [2]. In most works 
the particular case of a fluid completely filling the 
vessel subject to progressive vibrations is investigated. 
The equations for the time-averaged flow of that 
origin, called thermovibrational convection, have 
been obtained in ref. [3] by averaging the convection 
equation in the Boussinesq approximation. The recent 
analysis of Lyubimov [4] has demonstrated that the 
approach developed in ref. [3] becomes invalid in the 
case when the vibrations are non-uniform, as for 
example in the case when only some part of the body 
immersed in a liquid vibrates, while the others are at 
rest. Thermovibrational time-averaged flow exists in 
this case as well, but this flow has to be described by 
different equations, namely the ones obtained in ref. 
[41. 

In this paper we study the interaction of different 
mechanisms for time-averaged flow generation in the 

case of a simple geometry. The flow is induced by 
the vibrations of a solid sphere immersed in a fluid 
contained in a fixed spherical envelope so that the 
time-averaged position of the internal sphere coincides 
with the center of the envelope. The temperatures of 
the internal sphere and envelope are different, so the 
fluid completely filling the space between the spheres 
is non-isothermal. To exclude the effect of the usual 
gravitational convection we consider the case of a zero 
gravity. 

2. GO- EQUATlOt&-BO~A4%Y 
CONDfTIONS 

Let us consider the case when the internal sphere 
vibrates along the axes given by unit vector k accord- 
ing to sinusoidal law with the amplitude a and the 
frequency w. We study the high frequency vibrations 
of small amplitude so that the conditions 

and 

a s L (2) 

are satisfied. Here v is the kinematic viscosity, L is the 
characteristic size. We assume that the inequality (2) 
is satisfied at L = min (r,, r2, r2 -r,), where r, is the 
radius of the internal sphere. As shown in ref. [4], if 
the conditions (l)-(2) are satisfied, then the time- 
averaged flow is described by the following equations : 



2090 D. V. LYUBIMOV et al. 

a amplitude of vibrations V mean component of velocity 
b combination of non-dimensional v, radial components of mean velocity 

parameters v, tangential component of mean velocity 
B combination of non-dimensional vg polar components of mean velocity 

parameters W pulsating velocity amplitude in the 
E non-dimensional density of pulsating reference frame connected with the 

energy oscillating sphere 
Gu vibrational Grashof number, W, tangential component of pulsating 

~@azo’(rl)‘/v2 velocity amplitude in the reference frame 
k ratio, Gv/Sc connected with the oscillating sphere 
k unit vector along vibrational axis y renormalized value of the radial 
L characteristic size coordinate, (r - l)/(R - 1). 
L operator 
M operator Greek symbols 
N operator /I thermal expansion coefficient 
p mean pressure A Laplace operator 
Pr Prandtl number, v/x V gradient operator 
I radial coordinate of spherical coordinate V, operator of differentiation along the rigid 

system surface 
R adimensional radius of the envelope, 5 intermediate variable 

r2lrI 8 polar coordinate of spherical coordinate 
r* radius of the surface limiting an area of system 

closed flow 0 temperature difference between the inner 
r, radius of the inner sphere and outer spheres 
r2 radius of the envelope v kinematic viscosity 
SC Schlichting parameter, a’o/v 5 intermediate variable 
t time C$ azimuthal coordinate of spherical 
T mean temperature coordinate system 
U pulsating velocity amplitude in the Q, potential of pulsating velocity 

reference frame connected with the sphere at amplitude 
rest x thermal diffusivity coefficient 

U, tangential component of pulsating $ renormalized stream function 
velocity amplitude in the reference frame Y stream function of the mean flow 
connected with the sphere at rest o frequency of vibrations. 

; +(v*V)v = -V~F+AV+G~(V@)~VT (3) 
matic viscosity, x the thermal diffusivity and j the 
thermal expansion coefficient. 

divv = 0 

aT xi~.v~= $AT. 

(4) 
The boundary conditions for the oscillating part of 

the velocity are impermeability conditions, i.e. on the 

(5) 
surface of vibrating sphere, at r = 1, we have : 

m 
Here v is the average velocity, T and p are the fluid 

-=cOse 
& (7) 

temperature and pressure, Q is the potential of the 
pulsating velocity amplitude satisfying the Laplace 
equation : 

A@ = 0. (6) 

Equations (3)-(5) are written in non-dimensional 
form. The radius r, of the internal sphere, the ratio 
v/r, and 8, and the temperature di&?rence between 
internal and external spheres, are chosen as the units 
for length, vehocity and temperature. Two non-dimen- 
sional parameters are in the equations, the FWn&l 
number Pr = v/x and the vibrational analog of the 
Grashof number Go = f18a2w2rf/v2, v is the kine- 

and on the envelope surface, at r = R, 

acD 
-_=() 
f3r 

where R = r2/r, is the relative radius of the envelope. 
The conditions (7) and (8) are put down in a spherical 
coordinate system, r is the polar radius, 0 is the polar 
angle, the polar axis is directed along vibration axis 
k. We assume that the condition (7) is satisfied on the 
average surface ; such an assumption is reasonable if 
the vibration amplitude is small. 

We use impermeability condition instead of the no- 
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slip one because the system (6)-(8) describes the field 
of the pulsating velocity correctly everywhere except 
in the viscous skin-layers near the rigid surfaces, but 
the thickness of skin-layers are rather small due to 
relation (1). 

The thermal conductivities of solid bodies are 
assumed to be high, so that we can impose the iso- 
thermality conditions on that surfaces : 

T=O at r=R (9) 

and 

T=l at r=l (10) 

the envelope temperature being chosen as the ref- 
erence one. 

The pulsating part of velocity is not potential in the 
viscous skin-layers near the solid body surfaces. It is 
of vertical nature. This leads to the generation of the 
time-average vortex flow which can be described by 
specific boundary condition for the average velocity 
[ 1, 51. In our case this boundary condition is 

v, = - S@,Uf + 2u, - (V,U,)] (11) 

on the surface of the envelope, at r = R, and 

v, = - s@,w,2 + 2w, - (V,W,)] (12) 

on the vibrating sphere surface, at r = 1. 
Here U = V@, and W = U-k is the amplitude of 

the pulsating velocity in the reference frame connected 
with the vibrating sphere. The subscript t stands for 
the tangential components of vectors ; operator V, acts 
along the solid bodies surfaces. Strictly speaking, the 
conditions (1 1)-( 12) are satisfied on the external bor- 
ders of the viscous skin-layers, but due to the small 
values of their thickness, relation (1), we can impose 
the conditions (1 1)-( 12) on the solid body surfaces. 

Boundary conditions (l l)-(12) include one more 
non-dimensional parameter, SC = a%+, which is 
responsible for the time-averaged vortex flows gen- 
eration in the skin-layers. 

Fig. 1. Schematic description of the problem and coordinates 
definition. 

We restrict ourselves with the axisymmetrical solu- 
tions, i.e. we assume that the non-zero tangential com- 
ponents are only B-components. Then, the conditions 
(1 I)-(12) take the form: 

V, = -SC 
aa a2a, 

3zz+2c0tge at r=R 

and 

(13) 

2 

vg= -SC 

i 

aa, a2@, 
3-- 

ae a82 +2cotge $ 
[ 11 

atr=l 

where @, = @ cos 8. 

(14) 

The normal components of the time-averaged vel- 
ocities satisfy the impermeability condition : 

v,=O at r=l andat r=R. (15) 

The problem (6)-(8) has the solution : 

cos0 R3 a=----- I 1 -+r 
l-R3 2r2 

(16) 

By substituting equation (16) into equations (3) 
and (13) we obtain the closed problem for the time- 
averaged velocity v and temperature T. In axi- 
symmetrical case it is convenient to introduce the 
streamfunction Y : 

1 a(ylsine) 
v, = - 

rsinB de 
1 a(rY) 

%=;,r. 

(17) 

(18) 

For the solution (17)-( 18), equation (4) is satisfied 
identically and equations (3) and (5), with the boun- 
dary conditions (13)-(14) for stationary flows, take 
the form : 

I 
=LS (19) 

(= -LY (20) 

A~(Y', T) = ~AT (21) 

y=o !z=_!z SC 
’ ar 8 R(l-R3)* 

sin28 at r=R 

(22) 

Y=O E= -45 ScR6 sin20 at r=* 
’ dr 8 (1-R3)2 

(23) 

The operators A4 and L are : 

Wa,b) =A [ 
a(a sin e) ab 1 a(ar) ab ---gj-g-;~gj 1 
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1 
LEA...-----. 

r2 sin’ e ’ 

withA=~~[r2~]+-&--~[sin8$1. (24) 

The new variable E is proportional to the time- 
averaged density of the pulsating flow energy : 

E= [;I+$$ (25) 

3. CREEPING FLOWS 

At small values of the parameters Gv and SC it is 
possible to neglect by non-linear terms in fluid motion 
and heat transfer equations. Then we arrive at the 
equations : 

I 
= Ll (26) 

B= 
2 Gv 

15RZ(R- 1) SC’ 
(36) 

Thus, in the case of weak linear convection, the 
structure is defined not by two parameters Gv and SC 
separately, but by only one parameter, which is the 
ratio GviSc. 

(a) Limiting case : R -+ cc 
Before studying the convection in a container with 

the arbitrary ratio of radii R, let us investigate the 
more simple case when the sphere vibrates in the infi- 
nite fluid, i.e. the ratio R tends to infinity. In this case 
equations (31)-(32) take the form : 

and 

(37) 

J/=0 g-1 at r=l (38) 

i=-LY (27) *=O $=O at r=-+CX (39) 
AT=O. (28) 

where 
The solution of the equation (28) with the boundary 

conditions (9)-( 10) is : 

R 
--I 

T=&. (29) 
The solution of the problem (37)-(39) is 

For slow creeping we obtain by substituting equa- 
J/ =$ 

[ 
-$(r-‘-l)‘+f(r-‘-1) 

I 
(40) 

tions (16) and (29) into equation (26) : 
or by returning to the streamfunction Y : 

LC= - 
3R4Gv R’-4r’ 

4(R- 1)(1 -R3)2 
___ sin 20. 

r9 
(30) $r6(r-2-l)2+15Sc(r-2-1) I sin20. 

It follows from equation (30) and equations (22)- 
(23) that the solution for ‘I-’ is proportional to sin 20, (41) 

and by introducing the new variable 1+5 

Y= 45R6 $Scsin20 
8(1 -R3)’ 

one gets from equations (30) and (27) : 

R’ -4r3 
N<= -B---- 

r9 ’ 

5 = -W, 

where 

N=$+;$-; 
with the boundary conditions 

$=O g=_+ at r=R 

$=O %=--I at r=l 

where 

It follows from equation (41) that, due to the lin- 
earity of the equations, the resulting creeping flow 
is the simple superposition of thermovibrational and 
Schlichting flows and that this flow is symmetrical 
with respect to the equatorial plane. 

The Schlichting number SC is always positive. Thus 
(3 1) the flow described by the second term in equation (41) 

is of the same structure at any SC ; it is the jet flow 

(32) 
going away from the sphere pole, and in the equatorial 
plane the flow is directed towards the body. 

The sign of Gv can be different. If the value of Gv 
is negative, i.e. in the case when the vibrating sphere 

(33) is colder than the surrounding liquid, the fluid flows 
induced by thermovibrational and the Schlichting 
mechanisms are of the same direction. This means 
that the structure of the resulting flow is the same 

(34) as that of a pure Schlichting flow. In this case the 
streamlines are not closed, the liquid particles move 
from the pole to the infinity, and (near the equatorial 

(35) plane) from the infinity to the sphere. 
The situation is different when the vibrating sphere 

is warmer than the surrounding liquid. In that case 
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the fluid flows induced by the two mechanisms are of 
different direction. Near the vibrating sphere surface 
the circulation of the flow is defined by the boundary 
condition (38) and hence the flow here is always 
directed from equator to the pole. At arbitrary dis- 
tance from the vibrating sphere the direction of the 
flow is defined by the competition of the two mech- 
anisms. If the Gv is positive and small enough, then 
the last term in equation (40) is the main one and the 
direction of the circulation is the same as in the case 
discussed above but some of the streamlines become 
closed. If Gv is higher than the critical value, the flow 
structure is the ‘two-floor’ one. There is a separating 
spherical surface of radius r*, such as inside the layer 
limited by that surface the streamlines are closed and 
the liquid particles do not penetrate outside. The flow 
direction at r < r* is defined by equation (38). Outside 
this spherical layer the streamlines are not closed and 
the flow direction is of opposite direction (the liquid 
particles move to the sphere in the polar plane, and 
from the sphere in equatorial plane). Since at r = Y* 
the value of $ should be equal to zero, then we obtain 
from equation (41) 

r: = 
b 

b-252’ 

It follows from equation (42) that the ‘two-floor’ 
structure is possible if b is positive and larger than the 
critical value equal to 252. In terms of non-dimen- 
sional parameters Gv and SC, the existence condition 
of the two-floor structure is : 

g > 1890. 

The separating spherical surface appears at the 
infinity at this critical value of the ratio Gv/Sc, and 
moves to the sphere when this ratio increases. 

Note that the parameter 

b = &X3wr: 
does not depend on the vibration amplitude. 

(b) General case : finite R 
At the finite radius of the envelope, the one-floor 

flow is impossible since the flows have the same direc- 
tion near both rigid surfaces, due to the boundary 
conditions (34) and (35). 

The analytical solution of the problem at arbitrary 
values af R has also been found, but we do not give it 
here because of the too complicated form. 

The streamfunction Y defined above has a simple 
sense: it is the azimuthal component of the vector 
potential of velocity. However for presentation of the 
results this function is not the best because the surfaces 
of constant vahre of this function (except of the surface 
Y = 0) are not the integral surfaces for the velocity 
field. The needed property belongs to the stream- 
function 9 = Yr sin 8. We use for presentation of the 

results the radial part of the streamfunction 9, which 
is defined as r$(r). 

The results of tabulation for the obtained solutions 
are presented in Figs. 2-5 for different values of the 
envelope radius R and of the ratio k = Gv/Sc. Here, 
the vertical axis corresponds to the product r+(r), 
while the horizontal axis corresponds to the relative 
radial coordinate y = (r- l/R- I), with y = 0 at the 
surface of the inner (vibrating) sphere, and JJ = 1 at 
the surface of the envelope. 

As one can see, when the distance between the 
spheres is large enough (Fig. 2, R = 4), the flow struc- 
ture is similar to that obtained for infinite surrounding 
liquid. If the temperature difference between the 
spheres is not too high (curve 1, k = ZOOO), then the 
resulting flow structure is defined by Schichting mech- 
anism. The only vortex occupies the space between 
the spheres, besides, the direction of its circulation 
corresponds to the Schlichting flow induced in viscous 
skin-layer near the inner sphere. It is evident that, due 
to the boundary condition (34), there is the vortex of 
the opposite direction near the fixed sphere but the 
intensity of this vortex is so small and it occupies a 
layer of such small thickness that it is impossible to 
see it in the graph described under a unique scale. This 
vortex exists at any value of the parameters but we 
will not discuss it hereafter because its role is not 
important due to its small size and intensity. 

With the growth of the vibrational Grashof number 
the influence of thermovibrational flow increases and 
a vortex of different direction appears (curve 2, 
k = 3000). With further growth of Gv the intensity of 
thermovibrational flow increases while the intensity of 
Schlichting flow becomes lower, occupying the smaller 
area near the inner sphere (curves 3 and 4 ; k = 4000 
and 5000). The presence of the envelope results in the 
larger critical parameters for the appearance of the 
two-floor structure than that in the infinite sur- 
rounding liquid case. 

The decrease of the envelope radius leads to the 
growth of the critical parameters for the transition 
from one-vortex structure to multi-vortex one (Fig. 3, 
R = 2.5). The structure of the flow becomes more 
complicated. At the comparatively low values of Gv 
(Fig. 3, curve 1, k = 6000) a one-vortex flow takes 
place. At higher temperatures of inner sphere the main 
one-vortex flow remains, but two weak vortices of the 
same direction develop (curve 2, k = 8333). When k 
exceeds its critical value, the vortex of the opposite 
direction appears in the central part of the spherical 
layer (curve 3, k = 10000) ; with the growth of Gv 
its intensity and size become larger, while the outer 
vortices replace the inner sphere and envelope (curves 
4and5;k= 12OQOand15000). 

Figure 4 corresponds to R = 2.1. In this case the 
inffuence of Schlichting flow is very large and up to 
high values of k (curve 1, k = 50000) it determines 
the structure of resulting flow. Only at very high k do 
the vortices of dif%rent direction appear (curves 2, 3, 
4; k = 80000,100000,150000). Note that, in the case 



2094 D. V. LYUBIMOV et al. 

Fig. 2. Radial part of the streamfunction Y/sin 20 vs relative radial eoordinatey = (r- l)/(R- 1) at R = 4 : 
(1) k = 2000, (2) k = 3000, (3) k = 4000, (4) k = 5000. 

of such thickness of the layer, the pure therrno- 
vibrational flow is of two-vortices structure, the cor- 
responding part of the streamfunction is equal to zero 
near the point where all the lines cross. 

If the inner sphere is cooled (Gu and k are negative) 
and the layer thickness is large, the flow structure 
does not changequalitatively with the change of inner 
sphere temperature. The’strueture is ratbtr siaaple, 
this is one-vortex flow in the direction whW cor- 
responds to the Schlichting flow. At smaller values of 

the layer thiiness the complicated flow structure can 
exist for the cooled vibrating body (Fig. 5, R = 2.1) 
due to the con@icated structure of pure therrno- 
vibrational flow. With the increase of absolute value 
of k, the resulting flow of one-vortex structure (curve 
l;k= - 6000) chages to the two-vortex one (curves 
2-5; k = -lOQtW, -lSQ@O, -2ooo0, -25000). 

The ret&s di above are obtained for the 
tlbWSWi&%ate at small values of 

the parameters Ga and SC. To study the non-linear 
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Fig. 3. Radial part of the streamfunction Y/sin28 vs relative radial coordinate y = (r- l)/(R- 1) at 
R = 2.5: (1) k = 6000, (2) k = 8333, (3) k = 10000, (4) k = 12t!OO, (5) k = 15000. 

effects we have to carry out the numerical solution of Figs. 6-8. The calculations were carried out at fixed 
the fully non-linear equations. value of the Prandtl number : Pr = 1. 

The non-linear dynamic of the flow is determined 
by the parameters & and SC separately. We choose 
two governing parameters Gu and ratio k = ov/Sc for 
the results descrintion. In Fin. 6 the denendencies of 

A finite difference method was used for studying the extremal vahres of the~streamfunkion on the 
the non-linear behavior at arbitrary values of the par- vibrational Grashof number are presented for two 
ameters. The results of calculations are presented in different values of the parameter k. The curves 1 and 
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-0.8 

‘1 

Fig. 4. Radial part of the streamfunction Y/sin 28 vs relative radial coordinate y = (r- l)/(R- 1) at 
R = 2.1: (1) k = 50000, (2) k = 80000, (3) k = 100000, (4) k = 150000. 

2 correspond to k = 10000 and 8333. As one can see 
at k = 10000 (curve 1) and small values of Gv the 
flow intensity slowly increases with the increase of the 
vibrational Grashof number. At Go x 2700 a sharp 
increase of the flow intensity takes place. 

In Fig. 7(a)-(d) the” streamlines of the time-aver- 
aged steady Rows obtained by numerical simulation 
at k = loo00 and four different values of Gv are pre- 
sented. As one can see, at small values of-Gv the flow 
structure is the sameas the one obtained by analytical 
calculations under the reskriotion of creeping flow 
(Fig. 7a). This is a three-floor low structure. The three 

vortices are the Schlichting one placed near the inner 
sphere and the two thermovibrational vortices of 
different directions placed in the middle of the layer 
and near the outer sphere (as it was mentioned earlier 
there is one more Schlichting vortex near the outer 
sphere, but its intensity and size are so small that it 
cannot be seen in the picture being de++d in the 
unique scale). When the vibrational Grashof’number 
increases, the two vortices of the same directions 

‘d surfaces join and replace 
direction initk%y pIaced 

between &em into the equator&l area (Fig. 7b). In 
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Fig. 5. Radial part of the streamfunction Y/sin20 vs relative radial coordinate y = (r- l)/(R- 1) at 
R=2.1:(l)k= -6000,(2)k= -10000,(3)k= -15000,(4)k= -20000,(5)k= -25000. 

the vicinity of Gv = 2700 the transition from this flow 
structure to the one where the multi-vortex flow struc- 
ture in azimuthal direction is clearly displaced (Fig. 
7c) takes place. This transition in the flow structure is 
accompanied by a sharp increase of the extremal value 
of the streamfunction for the main vortex (Fig. 6, 
curve 1). With further increase of Gv, a continuous 
growth of the equatorial vortex size and intensity takes 
place so that at Gv = 3500 the polar and equatorial 
vortex intensities and sixes are actually the same (Fig. 
7d). 

Hysteresis phenomena were found to take place in 
the situation considered herein. As one can see from 

Fig. 6, curve 1, the lowering of the vibrational Grashof 
number from Go = 4000 up to Gv x 2600 leads to a 
slow decrease of the flow intensity and only at 
Go z 2600 does the sharp decrease of the flow inten- 
sity take place. Thus, we observe the non-linear 
behavior typical for the perfect bifurcation. In such 
case one could expect the existence of the solutions 
branch corresponding to anather preferable direction 
of circulation (strictly speaking even two branches 
should exist ; one of which corresponds to the stable 
solutions and the other to the unstable ones). Actu- 
ally, our calculations have shown the existence of the 
discussed branches. The branch of the stable solutions 
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-1 

Fig. 6. Extremal values of the streamfunction vs vibrational Grashof number at R = 2.5 : (1) and (1’) 
k = 10000; (2) and (2’) k = 8333. 

is described in Fig. 6 (curve 1) and the flow structure 
is shown in Fig. 7e. 

Similar phenomena are observed at k = 8333 ; but 
in that case the behavior is simpler. Then, at small 
values of the vibrational Grashof number, the flow 
structure corresponds to the one-vortex main flow 
and two weaker vortices of the same direction in the 
interior (Fig. 8). With the increase of the vibrational 
Grashof number, the two weak vortices combine into 
only one vortex. With further growth of the 
vibrational Grashof number the flow structure in the 
considered quarter of the sphere does not remain one- 
cellular, an additional weak vortex of the opposite 
direction appears near the equatorial plane. As in the 
case of k = 10000, the further growth of Gu leads to 
intensify this vortex so that at Gv = 3500 the two 
vortices are actually of the same intensity and size. 

5. DlWuWoN 

Thus, the high-frequency oscillations of a heated 
(or cooled) solid body immersed in a liquid induce 
time-averaged flow in that liquid due to two different 
mechanisms. The first of these mechanisms (the 
Schlichting one) acts even in the uniform fluid of con- 
stant density. In this case the pulsating flow in the thin 
viscous skin-layer near the vibrating body surface is 
of the vortex nature and, due to non-linear interaction, 
leads to time-averaged flow, which the vortex is as 
well. The second mechanism is a thermovibrational 
convective me&an&m of a new type discovered in ref. 
[4]. This thermovibrational convective e&t is linear 
with respect to small Boussinesq parameter /IS, 

whereas the conventional thermovibrational con- 
vective effect [3] is of the second order with respect to 
JO. As it is shown in ref. [4], the study of thermo- 
vibrational flows in the case (considered herein) of 
non-uniform vibrations should be performed taking 
into account the effect of the first order related to the 
spatial non-uniformity of isothermal pulsating vel- 
ocity field. The calculations carried out in the present 
paper on the base of a new approach developed in 
ref. [4] display the particular features of the above- 
mentioned phenomena. 

We have to point out that significant differences 
exist between the problem considered herein when an 
oscillating sphere placed in a fixed envelope (i.e. when 
the different parts of the boundary move in accord- 
ance with different laws), and the situation when the 
inner sphere and envelope oscillate in accordance with 
the same law. 

In the latter case the isothermal pulsating velocity 
field is zero in the proper reference frame connected 
with the osciilating sphere ; hence, contrary to the case 
considered herein, thermovibrational convective effect 
of the first order (with respect to small Boussinesq 
parameter /I@) is identically absent as well as iso- 
thermal vibrational Schlichting flow. Only the con- 
ventional thermovibrational convective efIect (of the 
second order) takes place. Hence in that case, the 
conventional equations for the thermovibrational 
convection with the non:slip conditions for the time- 
averag&vek&y on the rigid boundariesean be used. 

This leads to a quite different resulting flow struc- 
ture, namely (a) the f%ow structure becomes inde- 
pendent of the temperature difference sign between 
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Fig. 7. Streamlines of the stationary flows at R = 2.5, k = 10000: (a) Gv = 2000, (b) Gv = 2300, (c) 
Gv = 2600, (d) Gu = 3500, (e) Gv = 3500 (1’). 
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Fig. 8. Streamlines of the stationary flows at R = 2.5. 
k = 8333, Gu = 1000. 

the inner sphere and envelope and (b) the absence of 
the Schlichting flow leads to the simplification of the 
resulting flow structure. 

6. CONCLUSIONS 

The time-averaged flows induced by the oscillations 
of a heated (or cooled) solid sphere immersed in a 
liquid have been investigated on the basis of new gen- 
eralized equations of thermovibrational convection in 
non-uniform fluids. The two cases of infinite sur- 
rounding liquid and liquid placed into the spherical 

rigid envelope are considered. The interaction of 
thermovibrational flows and the Schlichting flows has 
been elucidated. 

Analytical investigation performed for small values 
of the governing parameters SC and Gv, under the 
restriction of creeping flows, showed that the 
vibrational flow essentially depends on the layer thick- 
ness, and in the case of small thicknesses it can be 
rather complicated. At fixed thickness of the layer 
the creeping flow structure is defined by only one 
parameter which is the ratio of the vibrational Gra- 
shof number and the Schhchting parameter 
(b x Gv/Sc). 

At larger values of the parameters SC and Gv, the 
structure of vibrational i-lows depends on these two 
parameters, separately. The evolution of the flow with 
the increase of two parameters has been investigated 
by a finite difference method. 
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